- Berikut adalah kunci jawaban Matematika Kelas 7 semester 2 halaman 117 118 119 120 soal Ayo Kita Berlatih menentukan hubungan garis dengan benar. Kunci Jawaban Matematika kelas 7 semester 2 halaman 117 118 119 120 terdapat pada buku implementasi Kurikulum 2013 edisi revisi 2016. Buku Matematika Kelas 7 semester 2 SMP/MTs tersebut merupakan karya dari Abdur Rahman AsΓ’tari, Mohammad Tohir, Erik Valentino, Zainul Imron, dan Ibnu Taufiq. Artikel berikut akan menjelaskan kunci jawaban soal Ayo Kita Berlatih menentukan hubungan garis di halaman 117 118 119 120. Kunci jawaban Buku Matematika Kelas 7 semester 2 ini dapat ditujukan kepada orang tua atau wali untuk mengoreksi hasil belajar. Sebelum menengok hasil kunci jawaban pastikan siswa harus terlebih dahulu menjawab soal yang disiapkan. Siswa belajar dari rumah didampingi orangtua. TRIBUNNEWS/HERUDIN Baca juga Kunci Jawaban Matematika Kelas 7 Halaman 58 59 Semester 2, Uji Kompetensi 5 Perbandingan Lalu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Kunci jawaban Buku Matematika Kelas 7 semester 2 halaman 117 118 119 120 Soal nomor 1 Bagaimana keberadaan titik dengan garis, titik dengan bidang, dan garis dengan bidang? Jelaskan JawabanTitik dengan garis antara lain Titik terletak di luar garis Titik terletak pada garis Titik dengan bidang antara lain Titik terletak di luar bidang Titik terletak pada bidang Garis dengan bidang antara lain Garis seluruhnya terletak pada bidang berimpitan Garis terletak di luar bidang Garis memotong bidang Soal nomor 2Soalsudah dilengkapi dengan Kunci Jawaban serta Pembahasan. Soal Bangun Ruang Kubus ini terdiri dari 25 soal pilihan ganda dan 10 soal uraian. Dengan adanya soal ini, semoga bisa membantu pembaca sekalian yang membutuhkan Soal Bangun Ruang Kubus untuk bahan ajar putra-putri/ anak didik / adik-adiknya yang duduk di bangku sekolah dasar kelas 5
Setelahdiketahui pertidaksamaan pada titik selidik O(0,0) maka kita menentukan daerah penyelesaiannya.Gambar 7, daerah penyelesaian berada di bawah garis g dan daerah titik uji O(0,0) juga berada di bawah garis g.Sehingga pertidaksamaannya mengikuti pertidaksamaan pada langkah (3) yaitu "lebih kecil".Maka daerah penyelesaiannya adalah 3x + 3yβ€9 atau jika disederhanakan menjadi . x + yβ€3.
MatematikaGEOMETRI Kelas 7 SMPSUDUT DAN GARIS SEJAJARKedudukan Dua Garisdiketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya. l15,3 dan 5,9 l24,2 dan 0,2 Kedudukan Dua GarisSUDUT DAN GARIS SEJAJARGEOMETRIMatematikaRekomendasi video solusi lainnya0257Perikan gambar balok berikut. H G E F D C A B P...0102Perikan gambar berikut!Pada gambar di atas, besar pelurus...0043Banyaknya garis yang dapat dibuat dari tiga titik yang ti...Teks videoDisini kita mempunyai soal sebagai berikut untuk menyelesaikan soal tersebut kita akan menggunakan konsep dari persamaan garis lurus diketahui dua titik pada garis L1 dan garis L2 berikut akan menentukan apakah kedua garis saling tegak lurus sejajar ataupun tidak keduanya nah l 1 mempunyai titik 5,3 dan 5 kemudian L2 melalui titik 4,2 dan 0,2 Nah maka kalau kita perhatikan sejajar. Tuliskan ini sejajar sumbu y persamaan X1 = X2 = 5 pakai garis L1 itu kan melalui dua titik X1 y1 5,3 kemudian X 2,29 Kemudian pada garis L2 garis L2 itu sejajar sumbu x dan sejajar sumbu x dengan persamaan 1 = Y 2 = 2 pada garis l satunya 4,2 kemudian itu kan 0,2 garis L2 sejajar sumbu x karena garis L1 sejajar sumbu y kemudian garis L2 sejajar dengan sumbu x maka kedua garis saling tegak lurus dua garis saling tegak lurus sama soal yang selanjutnya Sebelummempelajari persamaan garis singgung, baik dikuasai dulu PERSAMAAN LINGKARAN, sehingga untuk menuju materi persamaan garis singgung lingkaran tidak kesulitan ketika menentukan pusat-pusat lingkarannya. materi yang akan kita pelajari diantaranya persamaan garis singgung lingkaran melalui titik pada lingkaran, contoh soal persamaan garis singgung lingkaran yang sejajar dan persamaanο»ΏMateri SMP Kelas 8 Semester 1 1. Tentukan kemiringan tangga ranjang di bawah ini Jawab Kemiringan = 150 cm / 50 cm = 3 2. Masing-masing diagram berikut, P dan Q meupakan dua titik pada garis. a Tentukan kemiringan setiap Pilihlah dua titik lain dan hitunglah kemiringannya. Apakah kemiringannya juga berubah? Mengapa? Jawab a Kemiringan = 4-1/2-1 = 3/1 = 3 b Kemiringan = 2-1/-1-1 = 1/-2 = -Β½ 3. Jelaskan bagaimana kalian menentukan kemiringan garis lurus yang melalui dua titik berikut. a 2, 3 dan 6, 8. b β4, 5 dan β1, 3 Jawab a kemiringan = 8-3/6-2 = 5/4 b kemiringan = 3-5/-1-4 = -2/3 = -β
4. Gambarkan grafik dengan diketahui sebagai berikut. a 1, 1 dengan kemiringan β
b 0, β5 dengan kemiringan β2, 2 dengan kemiringan 0. Jawab 5. Garis yang melalui titik Aβ2, 3 dan B2, p memiliki kemiringan Β½. Tentukan nilai p Jawab Β½ = p-3/2-2 Β½ = p-3/4 Β½Γ4 = p-3 2 = p-3 p = 2+3 = 5 6. Kemiringan garis yang melalui titik 4, h dan h + 3, 7 kemiringan βΒΌ. Tentukan nilai h. Jawab -ΒΌ = 7-h/h+3-4 -ΒΌ = 7-h/h-1 -h-1 = 47-h -h+1 = 28-4h -h+4h = 28-1 3h = 27 h = 27/3 = 9 Untuk soal nomor 7 β 10, diketahui dua titik pada garis l1 dan garis l2. Tanpa menggambar grafik, tentukan apakah kedua garis tegak lurus, sejajar, atau tidak keduanya 7. .l1 2, 5 dan 4, 9 dan l2 β1, 4 dan 3, 2 Jawab Kemiringan l1 = 9-5/4-2 = 4/2 = 2 Kemiringan l2 = 2-4/3-1 = -2/4 = -Β½ Karena kemiringan l1 Γ kemiringan l2 = 2 Γ -Β½ = -1 Maka kedua garis tegak lurus. 8. l1 β3, β5 dan -1, 2 dan l2 0, 4 dan 7, 2 Jawab Kemiringan l1 = 2-5/-1-3 = 7/2 Kemiringan l2 = 2-4/7-0 = -2/7 Karena kemiringan l1 Γ kemiringan l2 = 7/2 Γ -2/7 = -1 Maka kedua garis tegak lurus. 9. l1 4, β2 dan 3, β1 dan l2 β5, β1 dan β10, β16 Jawab Kemiringan l1 = -1-2/3-4 = 1/-1 = -1 Kemiringan l2 = -16-1/-10-5 = -15/-5 = 3 Kedua garis tidak sejajar dan tidak tegak lurus 10. l1 0, 0 dan 2, 3 dan l2 β2, 5 dan 0, β2 Jawab Kemiringan l1 = 3-0/2-0 = 3/2 Kemiringan l2 = -2-5/0-2 = -7/2 Kedua garis tidak sejajar dan tidak tegak lurus 11. l1 5, 3 dan 5, 9 dan l2 4, 2 dan 0, 2 12. l1 3, 5 dan 2, 5 dan l2 2, 4 dan 0, 4 13. Garis yang melalui titik β5, 2p dan β1, p memiliki kemiringan yang sama dengan garis yang melalui titik 1, 2 dan 3, 1. Tentukan nilai p. Jawab p-2p/-1-5 = 1-2/3-1 p-2p/4 = -Β½ p-2p = -Β½ Γ 4 -p = -2 p = 2 14. Gambarlah grafik yang melalui titik W6, 4, dan tegak lurus DE dengan D0, 2 dan E5, 0. 15. Penerapan kemiringan suatu garis Banyaknya laki-laki berusia lebih dari 20 tahun yang bekerja di suatu provinsi secara linearmulai dari 1970 sampai 2005 ditunjukkan oleh gambar di bawah. Pada tahun 1970, laki-laki berusia di atas 20 tahun yang bekerja. Pada tahun 2005, jumlah ini meningkatmenjadi Tentukan kemiringan garis, gunakan titik 1970, 430 dan titik 2005, 654b. Apa maksud dari kemiringan pada soal dalam konteks masalah ini? Jawab a Kemiringan garis = 654-430/2005-1979 = 224/26 = 112/13
.